CREUF 2023 30 & 31 Mars 2023 MULHOUSE • ALSACE

Quelles indications de la VNI en 2023?

Professeur Arnaud W. THILLE

Chef de service

Médecine Intensive Réanimation

CHU de Poitiers, France.

IS-ALIVE Research group, INSERM CIC 1402, University of Poitiers.

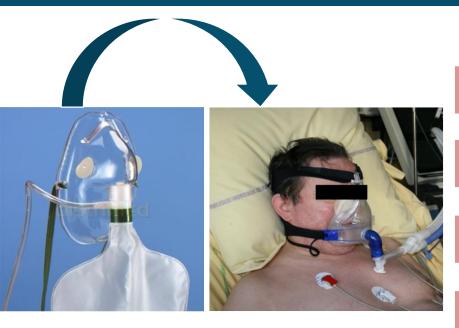
Conflicts of Interest

Fisher & Paykel provided the high-flow nasal oxygen equipment and masks for non-invasive ventilation in several randomized clinical trials coordinated by our center but had no other involvement in these studies.

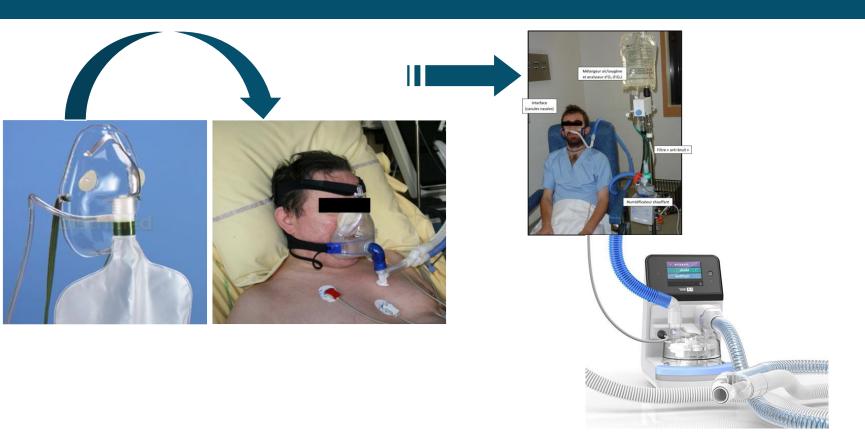
My COI

Personal fees from Fisher & Paykel, GE Healthcare and Sedana Medical: travel/accommodation expense coverage to attend scientific meetings and payment for lectures.

SEDANAMEDICAL


Beneficial effects of NIV

- 1. Heated and humidified gas
- 2. 7 PaO₂: FiO₂ 100% + PEEP
- effect 3. PaCO₂: Alveolar ventilation
- 4. > Effort: Pressure-Support
- 5. Cardiac effects


CPE

Deleterious effects of NIV

- 1. Poor tolerance
- 2. Patient-ventilator asynchronies
- 3. Delayed intubation?
- 4. Barotrauma: $V_T > 9$ ml/kg

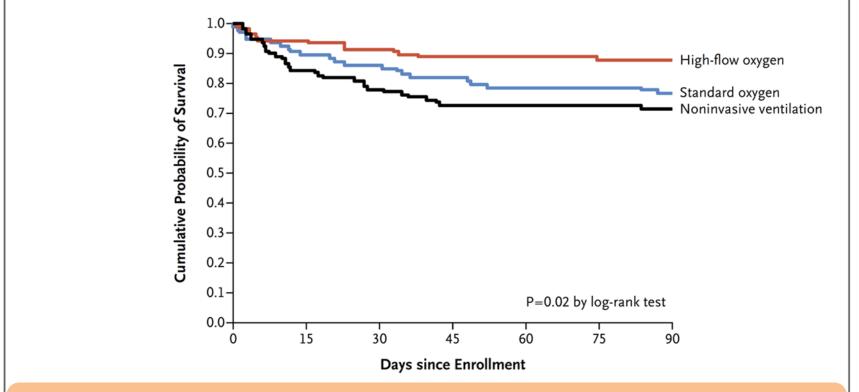
Which noninvasive respiratory support?

Saving Lives with High-Flow Nasal Oxygen

Michael A. Matthay, M.D.

The NEW ENGLAND JOURNAL of MEDICINE

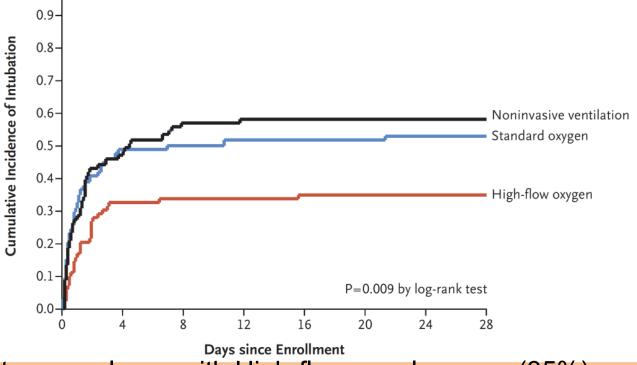
2015: The FLORALI


310 patients with acute respiratory failure included in 23 ICUs

 $RR > 25 / min, PaO_2 / FiO_2 \le$ 300 mm Hg, and $PaCO_2 \le 45$ mm Hg

ORIGINAL ARTICLE

High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure


Jean-Pierre Frat, M.D., Arnaud W. Thille, M.D., Ph.D., Alain Mercat, M.D., Ph.D., Christophe Girault, M.D., Ph.D., Stéphanie Ragot, Pharm.D., Ph.D., Sébastien Perbet, M.D., Gwénael Prat, M.D., Thierry Boulain, M.D., Elise Morawiec, M.D., Alice Cottereau, M.D., Jérôme Devaquet, M.D., Saad Nseir, M.D., Ph.D., Keyvan Razazi, M.D., Jean-Paul Mira, M.D., Ph.D., Laurent Argaud, M.D., Ph.D., Jean-Charles Chakarian, M.D., Jean-Damien Ricard, M.D., Ph.D., Xavier Wittebole, M.D., Stéphanie Chevalier, M.D., Alexandre Herbland, M.D., Muriel Fartoukh, M.D., Ph.D., Jean-Michel Constantin, M.D., Ph.D., Jean-Marie Tonnelier, M.D., Marc Pierrot, M.D., Armelle Mathonnet, M.D., Gaëtan Béduneau, M.D., Céline Delétage-Métreau, Ph.D., Jean-Christophe M. Richard, M.D., Ph.D., Laurent Brochard, M.D., and René Robert, M.D., Ph.D., for the FLORALI Study Group and the REVA Network*

Mortality was lower with High-flow nasal oxygen (12%) than with Standard O_2 (23%) or Noninvasive ventilation (28%), p=0.02.

Figure 3. Kaplan-Meier Plot of the Probability of Survival from Randomization to Day 90.

Among the 238 patients with $PaO_2/FiO_2 \le 200 \text{ mm Hg}$

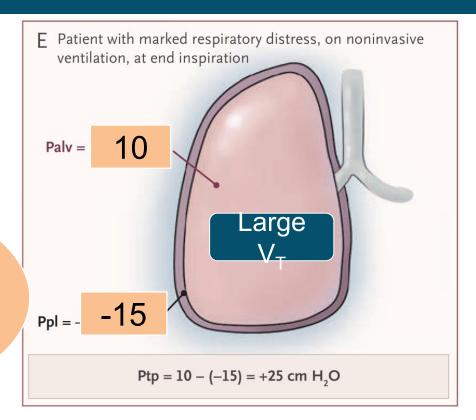
Intubation rates were lower with High-flow nasal oxygen (35%) than with Standard O_2 (53%) or Noninvasive ventilation (58%), p<0.01.

Frat JP. et al., New England Journal of Medicine 2015;

Table S5. Assessment of tolerance to the oxygenation strategy at inclusion and 1 hour after inclusion *							
	High-Flow	Standard	NIV				
	Oxygen group	Oxygen group	group				
	(n=106)	(n=94)	(n=110)	P Value			
Respiratory patient-discomfort at inclusion – mm †	38±31	44±29	46±30	0.20			
Respiratory patient-discomfort at H1– mm †	29	40	43	<0.01			
Grade of dyspnea at H1‡				<0.001			
Marked improvement – no. (%)	76%	42%	58%				
Slight improvement– no. (%)	1070	1270	0070				
No change– no. (%)	18 (20.9)	33 (44.6)	23 (25.3)				
Slight deterioration – no. (%)	3 (3.5)	9 (12.2)	8 (8.8)				
Marked deterioration – no. (%)	0 (0.0)	1 (1.3)	7 (7.7)				
Respiratory rate– breaths/min							
H1	28	31	31	<0.01			
H6	27±7	29±8	29±7	0.13			

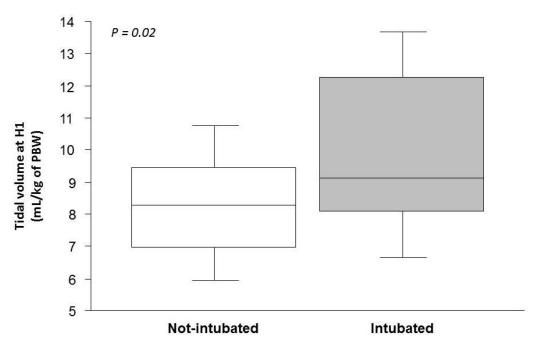
Patient self-inflicted lung injury (PSILI)

CRITICAL CARE PERSPECTIVE


Mechanical Ventilation to Minimize Progression of Lung Injury in Acute Respiratory Failure

Laurent Brochard^{1,2}, Arthur Slutsky^{1,2}, and Antonio Pesenti^{3,4}

¹Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada; ²Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; ³Department of Anesthesia, Critical Care, and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; and ⁴Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milan, Italy


Brochard L et al., Am J Respir Crit Care Med 2017; 195:438-442

> Transpulmonar y pressure 25 cm H₂O!

Predictors of Intubation in Patients With Acute Hypoxemic Respiratory Failure Treated With a Noninvasive Oxygenation Strategy*

Jean-Pierre Frat, MD^{1,2,3}; Stéphanie Ragot, PhD^{4,5,6}; Rémi Coudroy, MD^{1,2,3}; Jean-Michel Constantin, PhD^{7,8}; Christophe Girault, MD⁹; Gwénael Prat, MD¹⁰; Thierry Boulain, MD¹¹; Alexandre Demoule, PhD^{12,13}; Jean-Damien Ricard, PhD^{14,15,16}; Keyvan Razazi, MD¹⁷; Jean-Baptiste Lascarrou, MD¹⁸; Jérôme Devaquet, MD¹⁹; Jean-Paul Mira, PhD²⁰; Laurent Argaud, PhD²¹; Jean-Charles Chakarian, MD²²; Muriel Fartoukh, PhD²³; Saad Nseir, PhD²⁴; Alain Mercat, PhD²⁵; Laurent Brochard, MD^{26,27}; René Robert, PhD^{1,2,3}; Arnaud W. Thille, PhD^{1,2,3}; for the REVA network

V_T > 9 ml/kg
1h after NIV initiation
was independently
associated with
intubation and mortality.

Frat JP. et al., Critical Care Medicine 2018;

Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure

Bram Rochwerg ¹, Laurent Brochard^{2,3}, Mark W. Elliott⁴, Dean Hess⁵, Nicholas S. Hill⁶, Stefano Nava⁷ and Paolo Navalesi⁸ (members of the steering committee); Massimo Antonelli⁹, Jan Brozek¹, Giorgio Conti⁹, Miquel Ferrer¹⁰, Kalpalatha Guntupalli¹¹, Samir Jaber¹², Sean Keenan^{13,14}, Jordi Mancebo¹⁵, Sangeeta Mehta¹⁶ and Suhail Raoof^{17,18} (members of the task force)

Recommendation

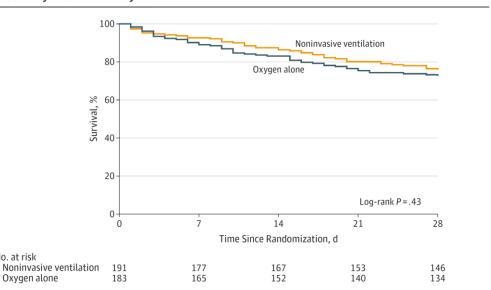
Given the uncertainty of evidence we are unable to offer a recommendation on the use of NIV for *de novo* ARF.

Recommendation

We suggest early NIV for immunocompromised patients with ARF. (Conditional recommendation, moderate certainty of evidence.)

Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Effect of Noninvasive Ventilation vs Oxygen Therapy on Mortality Among Immunocompromised Patients With Acute Respiratory Failure A Randomized Clinical Trial


Virginie Lemiale, MD; Djamel Mokart, MD; Matthieu Resche-Rigon, MD, PhD; Frédéric Pène, MD, PhD; Julien Mayaux, MD; Etienne Faucher, MD;

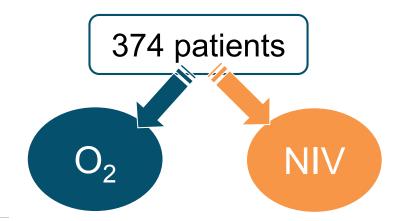

Martine Nyunga, MD; Christophe Girault, MD, PhD; Pierre Perez, MD; Christophe Guitton, MD, PhD; Kenneth Ekpe, MD; Achille Kouatchet, MD; Igor Théodose, MS; Dominique Benoit, MD, PhD; Emmanuel Canet, MD; François Barbier, MD, PhD; Antoine Rabbat, MD; Fabrice Bruneel, MD; Francois Vincent, MD: Kada Klouche, MD. PhD: Kontar Loay, MD: Eric Mariotte, MD: Lila Bouadma, MD. PhD: Anne-Sophie Moreau, MD: Amélie Seguin, MD; Anne-Pascale Meert, MD, PhD; Jean Reignier, MD, PhD; Laurent Papazian, MD, PhD; Ilham Mehzari, MD; Yves Cohen, MD, PhD; Maleka Schenck, MD; Rebecca Hamidfar, MD; Michael Darmon, MD, PhD; Alexandre Demoule, MD, PhD; Sylvie Chevret, MD, PhD; Elie Azoulay, MD, PhD; Alexandre Demoule, MD, PhD; Sylvie Chevret, MD, PhD; Elie Azoulay, MD, PhD; Alexandre Demoule, MD, PhD; Sylvie Chevret, MD, PhD; Elie Azoulay, MD, PhD; Alexandre Demoule, MD, PhD; Sylvie Chevret, MD, PhD; Elie Azoulay, MD, PhD; Alexandre Demoule, MD, PhD; Sylvie Chevret, MD, PhD; Elie Azoulay, MD, PhD; Alexandre Demoule, MD, PhD; Sylvie Chevret, MD, PhD; Elie Azoulay, MD, PhD; Alexandre Demoule, MD, PhD; Alexandre D for the Groupe de Recherche en Réanimation Respiratoire du patient d'Onco-Hématologie (GRRR-OH)

Figure 2. Probability of Survival at Day 28

No. at risk

Oxygen alone

Intubation:

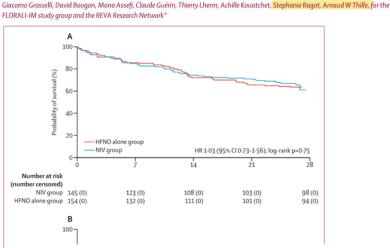
O₂ 44% vs. VNI 38% (p=0.20)

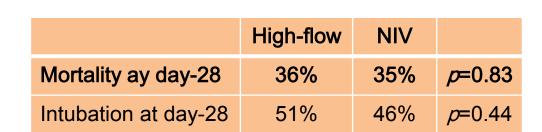
Low dosis of NIV (short sessions 8h/day) with low PEEP levels...

Lemiale V. et al., JAMA 2015; 314:1711-

FLORALI-IM study

300 immunocompromised patients with acute respiratory failure in 29 ICUs


 $RR \ge 25$ breaths/min and $PaO_2/FiO_2 \le$ 300 mm Hg and PaCO₂ \leq 50 mm Hg. High-flow High-flow Randomization nasal nasal Stratification on Hematological oxygen oxygen disease alone with NIV Mortality at day-90


High-flow nasal oxygen alone or alternating with non-invasive ventilation in critically ill immunocompromised patients with acute respiratory failure: a randomised controlled trial

Protective **NIV**Prolonged sessions > 12h/day
Low PS - High PEEP levels (8-

Rémi Coudroy, Jean-Pierre Frat, Stephan Ehrmann, Frédéric Pène, Maxens Decavèle, Nicolas Terzi, Gwenaël Prat, Charlotte Garret, Damien Contou, Arnaud Gacouin, Jeremy Bourenne, Christophe Girault, Christophe Vinsonneau, Jean Dellamonica, Guylaine Labro, Sébastien Jochmans, Alexandre Herbland, Jean-Pierre Quenot, Jérôme Devaquet, Dalila Benzekri, Emmanuel Vivier, Saad Nseir, Gwenhaël Colin, Didier Thevenin,

Recommendation

We suggest early NIV for immunocompromised patients with ARF. (Conditional recommendation, moderate certainty of evidence.)

???

Number at risk Time since randomisation (days)

Number censored)

NIV group 145 (0) 83 (0) 78 (0) 78 (0) 78 (0)

HFNO alone group 154 (0) 81 (0) 77 (0) 76 (0) 76 (0)

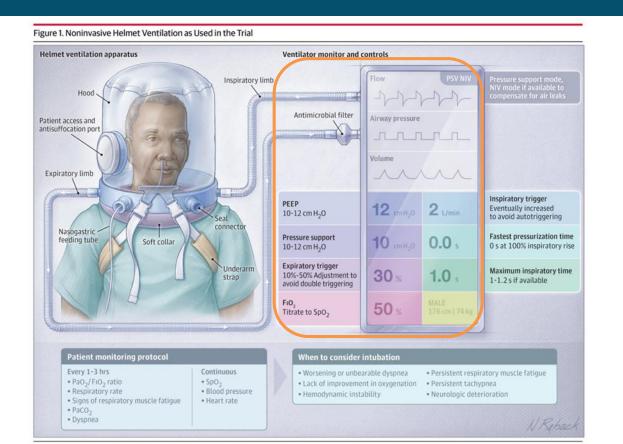

Coudroy R. et al., Lancet Respiratory Medicine 2022;

ERS clinical practice guidelines: high-flow nasal cannula in acute respiratory failure

Simon Oczkowski^{1,2,26}, Begüm Ergan ^{03,26}, Lieuwe Bos ^{04,5}, Michelle Chatwin⁶, Miguel Ferrer⁷, Cesare Gregoretti^{8,9}, Leo Heunks¹⁰, Jean-Pierre Frat^{11,12}, Federico Longhini ⁰¹³, Stefano Nava^{14,15}, Paolo Navalesi ^{016,17}, Aylin Ozsancak Uğurlu¹⁸, Lara Pisani^{14,15}, Teresa Renda¹⁹, Arnaud W. Thille ^{011,12}, João Carlos Winck ⁰²⁰, Wolfram Windisch²¹, Thomy Tonia²², Jeanette Boyd²³, Giovanni Sotgiu ⁰²⁴ and Raffaele Scala²⁵

Effective on Intubation, Comfort & Dyspnea

HFNC for hypoxaemic acute respiratory failure


PICO question 1: Should HFNC or COT be used in patients with acute hypoxaemic respiratory failure? Recommendation 1

We suggest the use of HFNC over COT in adults with acute hypoxaemic respiratory failure (conditional recommendation, moderate certainty of evidence).

PICO question 2: Should HFNC or NIV be used in patients with acute hypoxaemic respiratory failure? Recommendation 2

We suggest the use of HFNC over NIV in patients with acute hypoxaemic respiratory failure (conditional recommendation, very low certainty of evidence).

What the future holds? Helmet?

Physiological Comparison of High-Flow Nasal Cannula and Helmet Noninvasive Ventilation in Acute Hypoxemic Respiratory Failure

Domenico Luca Grieco^{1,2}, Luca S. Menga^{1,2}, Valeria Raggi^{1,2}, Filippo Bongiovanni^{1,2}, Gian Marco Anzellotti^{1,2}, Eloisa S. Tanzarella^{1,2}, Maria Grazia Bocci^{1,2}, Giovanna Mercurio^{1,2}, Antonio M. Dell'Anna^{1,2}, Davide Eleuteri^{1,2}, Giuseppe Bello^{1,2}, Riccardo Maviglia^{1,2}, Giorgio Conti^{1,2}, Salvatore Maurizio Maggiore³, and Massimo Antonelli^{1,2}

Respiratory rate

p=0.027

Helmet NIV

HFNC

50

30

20

breaths/minute

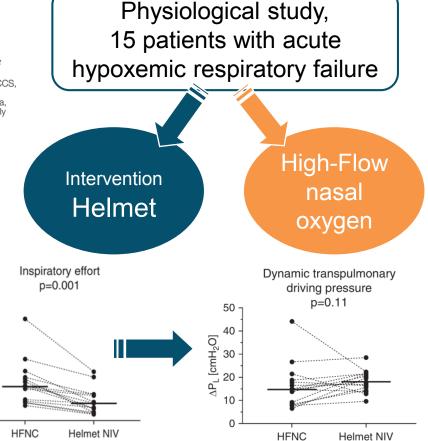
¹Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; ²Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and ³Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, Section of Anesthesia, Analgesia, Perioperative and Intensive Care, SS. Annunziata Hospital, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy

10 -

8

2

HFNC


Dyspnea

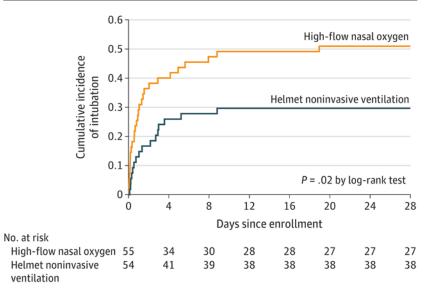
p=0.002

Helmet NIV

ΔP_{ES} [cmH₂O] 10

10

Grieco DL. et al., Am J Respir Crit Care Med 2020;


Research

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Effect of Helmet Noninvasive Ventilation vs High-Flow Nasal Oxygen on Days Free of Respiratory Support in Patients With COVID-19 and Moderate to Severe Hypoxemic Respiratory Failure
The HENIVOT Randomized Clinical Trial

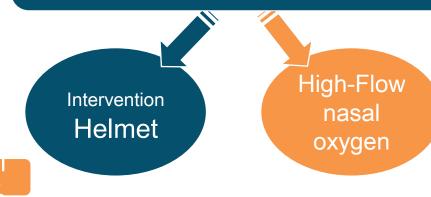
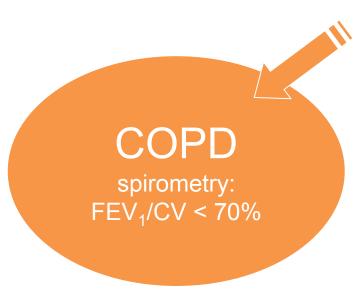

Domenico Luca Grieco, MD; Luca S. Menga, MD; Melania Cesarano, MD; Tommaso Rosà, MD; Savino Spadaro, MD, PhD; Maria Maddalena Bitondo, MD; Jonathan Montomoli, MD, PhD; Giulia Falò, MD; Tommaso Tonetti, MD; Salvatore L. Cutuli, MD; Gabriele Pintaudi, MD; Eloisa S. Tanzarella, MD; Edoardo Piervincenzi, MD; Filippo Bongiovanni, MD; Antonio M. Dell'Anna, MD; Luca Delle Cese, MD; Cecilia Berardi, MD; Simone Carelli, MD; Maria Grazia Bocci, MD; Luca Montini, MD; Giuseppe Bello, MD; Daniele Natalini, MD; Gennaro De Pascale, MD; Matteo Velardo, PhD; Carlo Alberto Volta, MD; V. Marco Ranieri, MD; Giorgio Conti, MD; Salvatore Maurizio Maggiore, MD, PhD; Massimo Antonelli, MD; for the COVID-ICU Gemelli Study Group

Figure 3. Cumulative Incidence of Intubation Over Time in the Helmet Noninvasive Ventilation and High-Flow Nasal Oxygen Groups to Day 28

HENIVOT study

109 patients Covid-19 included in 4 ICUs between October and December 2020.



0/

Mortality	Helmet	High-flow nasal oxygen	
At day-28	8 (15%)	10 (18%)	<i>P</i> = 0.80
At day-60	13 (24%)	12 (22%) <i>Grieco DL. et al., JAMA 202</i>	P= 0.82

Acute hypercapnic respiratory failure

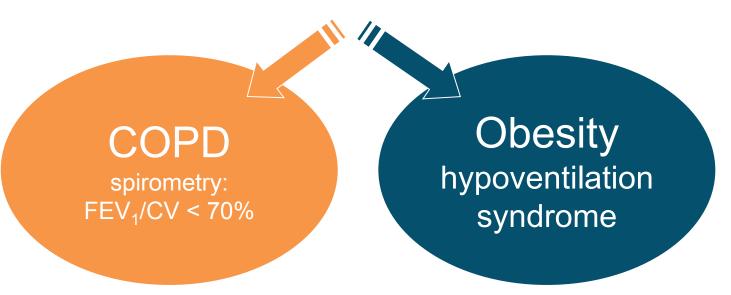
undarlying chronic lung disage

Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure

Bram Rochwerg ¹, Laurent Brochard^{2,3}, Mark W. Elliott⁴, Dean Hess⁵, Nicholas S. Hill⁶, Stefano Nava⁷ and Paolo Navalesi⁸ (members of the steering committee); Massimo Antonelli⁹, Jan Brozek¹, Giorgio Conti⁹, Miquel Ferrer¹⁰, Kalpalatha Guntupalli¹¹, Samir Jaber¹², Sean Keenan^{13,14}, Jordi Mancebo¹⁵, Sangeeta Mehta¹⁶ and Suhail Raoof^{17,18} (members of the task force)

Hypercapnic ARF Chronic lung disease

Recommendations

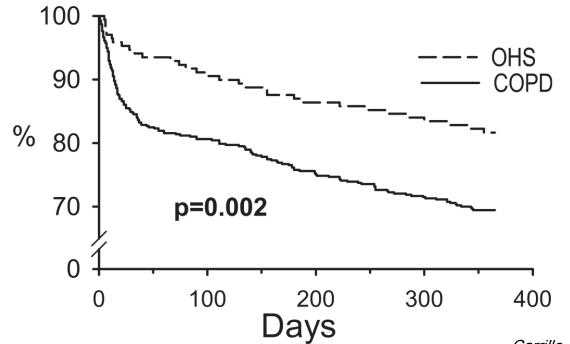

We recommend bilevel NIV for patients with ARF leading to acute or acute-on-chronic respiratory acidosis (pH \leq 7.35) due to COPD exacerbation. (Strong recommendation, high certainty of evidence.)

We recommend a trial of bilevel NIV in patients considered to require endotracheal intubation and mechanical ventilation, unless the patient is immediately deteriorating. (Strong recommendation, moderate certainty of evidence.)

PaCO₂ > 45 mm Hg and pH ≤ 7.35

Acute hypercapnic respiratory failure

undarlying chronic lung dicage



Noninvasive Ventilation in Acute Hypercapnic Respiratory Failure Caused by Obesity Hypoventilation Syndrome and Chronic Obstructive Pulmonary Disease

Andres Carrillo¹, Miquel Ferrer^{2,3}, Gumersindo Gonzalez-Diaz¹, Antonia Lopez-Martinez¹, Noemi Llamas¹, Maravillas Alcazar¹, Lucia Capilla¹, and Antoni Torres^{2,3}

¹Intensive Care Unit, Hospital JM Morales Meseguer, Murcia, Spain; ²UVIIR, Servei de Pneumologia, Institut del Tòrax, Hospital Clinic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain; and ³Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CibeRes, CB06/06/0028), Instituto de Salud Carlos III, Madrid, Spain

Single center
716 patients
543 COPD & 173 OHS

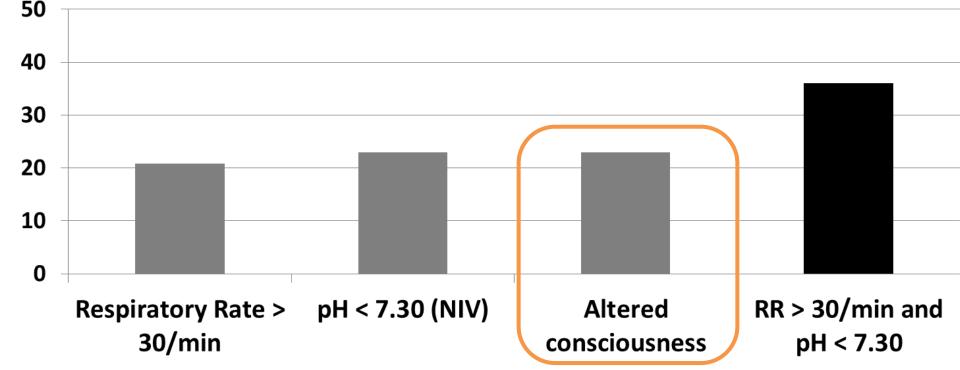
Better survival in obese patients


Carrillo A. et al., Am J Respir Crit Care Med 2012, 186:

Noninvasive Ventilation for Acute Hypercapnic Respiratory Failure: Intubation Rate in an Experienced Unit

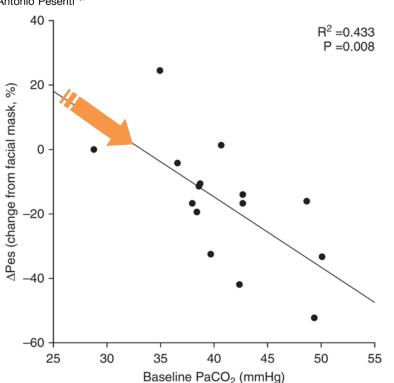
Damien Contou MD, Chiara Fragnoli MD, Ana Córdoba-Izquierdo MD, Florence Boissier MD, Christian Brun-Buisson MD, and Arnaud W Thille MD PhD

Respiratory Care, 2013; 58:2045-2052


Single center 242 patients

Noninvasive Ventilation for Acute Hypercapnic Respiratory Failure: Intubation Rate in an Experienced Unit

Damien Contou MD, Chiara Fragnoli MD, Ana Córdoba-Izquierdo MD, Florence Boissier MD, Christian Brun-Buisson MD, and Arnaud W Thille MD PhD


Single center 242 patients

ORIGINAL ARTICLE

Physiologic Effects of High-Flow Nasal Cannula in Acute Hypoxemic Respiratory Failure

Tommaso Mauri^{1,2}, Cecilia Turrini^{1,3}, Nilde Eronia⁴, Giacomo Grasselli¹, Carlo Alberto Volta³, Giacomo Bellani^{4,5}, and Antonio Pesenti^{1,2}

Physiological study, 15 patients with acute hypoxemic respiratory failure

The higher the PaCO₂, the greater the reduction in work of breathing

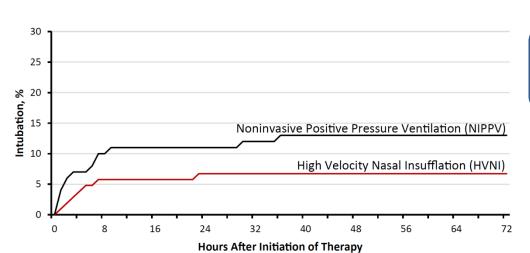
Change in pulmonary mechanics and the effect on breathing pattern of high flow oxygen therapy in stable hypercapnic COPD

High-flow nasal oxygen
Decreased patient respiratory effort++

Thorax 2017;**51**:373–375.

Lara Pisani*, Luca Fasano[#], Nadia Corcione*, Vittoria Comellini*, Muriel Assunta Musti^, Maria Brandao°, Damiano Bottone⁺, Edoardo Calderini[&], Paolo Navalesi[§], Stefano Nava*

 Table 1
 Breathing pattern, inspiratory effort and lung mechanics in different settings

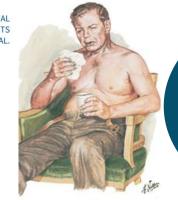

	Baseline	HFOT 20 (closed)	HFOT 20 (open)	HFOT 30 (closed)	HFOT 30 (open)	NIV
TI,p (seconds) TE,p (seconds) Breathing frequency (breaths/min) Tidal volume (mL)		0.85±0.4 2.35±0.4* 19.01±5.2† 391.22±106‡	0.96±0.2 2.19±0.5* 20.8±5.8		0.92±0.3 2.20±0.3* 19.64±2.8	
Pdi swing (cmH ₂ O)	83 cmH ₂ O xs/?.12::10.9	8.7±4.1§ 164.2±51.3** 1.48±0.7‡‡	12±5.8 172.7±45.4**	143 1.03±0.6‡‡	10.2±5.2§ 157.3±56.9**	102 0.9±0.02‡‡

High-Velocity Nasal Insufflation in the Treatment of Respiratory Failure: A Randomized Clinical Trial

Pratik Doshi, MD*; Jessica S. Whittle, MD; Michael Bublewicz, MD; Joseph Kearney, MD; Terrell Ashe, RRT; Russell Graham, RRT; Suesann Salazar, RRT; Terry W. Ellis, Jr, RRT; Dianna Maynard, RRT; Rose Dennis, RRT; April Tillotson, RRT; Mandy Hill, DrPH; Misha Granado, MPH; Nancy Gordon, MS; Charles Dunlap, RRT; Sheldon Spivey, RRT; Thomas L. Miller, PhD

*Corresponding Author. E-mail: pratik.b.doshi@uth.tmc.edu.

Table 1. Baseline characteristics of the patients, according to study group.


Characteristic	HVNI (N=104)	NIPPV (N=100)
Age (SD), y	63.4 (13.6)	63.3 (14.8)
Body mass index (SD), kg/m ²	31.8 (11.2)	31.2 (11.3)
APACHE II score (SD)*	31.2 (6.3)	30.7 (6.5)
Male sex, No. (%)	44 (42)	46 (46)
Discharge diagnosis, No. (%)		
Asthma	4 (4)	3 (3)
Acute decompensated heart failure	22 (21)	20 (20)
Acute COPD exacerbation	40	24 (24)
Acute hypercapnic respiratory failure	48	7 (7)
Acute hypoxic respiratory failure		13 (13)
Acute hypercapnic and hypoxic	%	13 (13)
respiratory failure	/0	
Pneumonia/sepsis	15 (14)	20 (20)
Time to initiation of therapy (SD), min	69.9 (128.3)	76.9 (133.8)
Time to setup of therapy (SD), min	11.1 (7.7)	11.2 (8.8)
Pulse rate (SD), beats/min	100.4 (21.2)	101.0 (21.3)
Respiratory rate (SD), breaths/min	31.3 (8.0)	29.3 (8.2)
SpO ₂ (SD), %	93.2 (7.0)	93.5 (8.9)
PCO ₂ (SD), mm Hg	53.4 (20.6)	58.7 (25.0)
Arterial pH (SD)	7.35 (0.10)	7.33 (0.08)
Modified Borg score [†] (SD)	6.3 (3.0)	6.4 (2.6)

Doshi P. et al., Annals of Emergency Medicine 2018;

ROPEAN RESPIRATORY JOURNAL ERS OFFICIAL DOCUMENTS S. OCZKOWSKI ET AL.

ERS clinical practice guidelines: high-flow nasal cannula in acute respiratory failure

Simon Oczkowski^{1,2,26}, Begüm Ergan ^{03,26}, Lieuwe Bos ^{04,5}, Michelle Chatwin⁶, Miguel Ferrer⁷, Cesare Gregoretti^{8,9}, Leo Heunks¹⁰, Jean-Pierre Frat^{11,12}, Federico Longhini ⁰¹³, Stefano Nava^{14,15}, Paolo Navalesi ^{016,17}, Aylin Ozsancak Uğurlu¹⁸, Lara Pisani^{14,15}, Teresa Renda¹⁹, Arnaud W. Thille ^{011,12}, João Carlos Winck ⁰²⁰, Wolfram Windisch²¹, Thomy Tonia²², Jeanette Boyd²³, Giovanni Sotgiu ⁰²⁴ and Raffaele Scala²⁵

Hypercapnic ARF
Chronic lung disease

HFNC in hypercapnic respiratory failure

PICO question 8: Should HFNC or NIV be used in patients with acute hypercapnic respiratory failure? Recommendation 8

We suggest a trial of NIV prior to use of HFNC in patients with COPD and acute hypercapnic respiratory failure (conditional recommendation, low certainty of evidence).

△-Syndrome d'Apnées du Sommeil

LETTER

High prevalence of sleep apnea syndrome in patients admitted to ICU for acute hypercapnic respiratory failure: a preliminary study

Arnaud W. Thille^{1,2*}, Ana Córdoba-Izquierdo³, Bernard Maitre^{4,5}, Laurent Boyer^{5,6}, Laurent Brochard^{7,8} and Xavier Drouot^{9,10}

Single center - Patients included: N = 35

Not Studied:

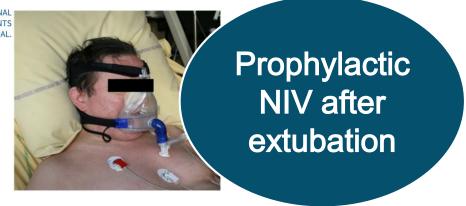
Death within the 3 months following ICU discharge: N

= 5

➤ PSG + spirometry at 3 months (N = 16)

Sleep apneas 100% Severe in 56% (> 30/h)

7 PEEP 8-10 cm


Thille AW. et al., Intensive Care Medicine 2018;

EUROPEAN RESPIRATORY JOURNAL ERS OFFICIAL DOCUMENTS S. OCZKOWSKI ET AL.

ERS clinical practice guidelines: high-flow nasal cannula in acute respiratory failure

Simon Oczkowski^{1,2,26}, Begüm Ergan ^{3,26}, Lieuwe Bos ^{4,5}, Michelle Chatwin⁶, Miguel Ferrer⁷, Cesare Gregoretti^{8,9}, Leo Heunks¹⁰, Jean-Pierre Frat^{11,12}, Federico Longhini ³, Stefano Nava^{14,15}, Paolo Navalesi ^{16,17}, Aylin Ozsancak Uğurlu¹⁸, Lara Pisani^{14,15}, Teresa Renda¹⁹, Arnaud W. Thille ^{11,12}, João Carlos Winck ²⁰, Wolfram Windisch²¹, Thomy Tonia²², Jeanette Boyd²³, Giovanni Sotgiu ²⁴ and Raffaele Scala²⁵

PICO question 7: Should HFNC or NIV be used in nonsurgical patients after extubation? Recommendation 7

We suggest the use of NIV over HFNC after extubation for patients at high risk of extubation failure unless there are relative or absolute contraindications to NIV (conditional recommendation, moderate certainty of evidence).

Effect of Postextubation High-Flow Nasal Oxygen With Noninvasive Ventilation vs High-Flow Nasal Oxygen Alone on Reintubation Among Patients at High Risk of Extubation Failure A Randomized Clinical Trial

Arnaud W. Thille, MD, PhD; Grégoire Muller, MD; Arnaud Gacouin, MD; Rémi Coudroy, MD; Maxens Decavèle, MD; Romain Sonneville, MD, PhD; Francois Beloncle, MD; Christophe Girault, MD; Laurence Dangers, MD; Alexandre Lautrette, MD, PhD; Séverin Cabasson, MD; Anahita Rouzé, MD; Emmanuel Vivier, MD: Anthony Le Meur, MD: Jean-Damien Ricard, MD. PhD: Keyvan Razazi, MD: Guillaume Barberet, MD: Christine Lebert, MD: Stephan Ehrmann, MD, PhD; Caroline Sabatier, MD; Jeremy Bourenne, MD; Gael Pradel, MD; Pierre Bailly, MD; Nicolas Terzi, MD, PhD; Jean Dellamonica, MD, PhD; Guillaume Lacave, MD; Pierre-Éric Danin, MD; Hodanou Nanadoumgar, MD; Aude Gibelin, MD; Lassane Zanre, MD; Nicolas Deye, MD, PhD; Alexandre Demoule, MD, PhD; Adel Maamar, MD; Mai-Anh Nay, MD; René Robert, MD, PhD: Stéphanie Ragot. PharmD. PhD: Jean-Pierre Frat, MD; for the HIGH-WEAN Study Group and the REVA Research Network

QUESTION Among mechanically ventilated patients at high risk of extubation failure, does the use of high-flow nasal oxygen with noninvasive ventilation (NIV), vs high-flow nasal oxygen alone, after extubation reduce the risk of reintubation?

CONCLUSION Compared with high-flow nasal oxygen alone, the use of high-flow nasal oxygen with NIV after extubation significantly decreased the risk of reintubation in patients at high risk of failure to extubate.

POPULATION

425 Men 216 Women

Adults at high risk of failure to extubate, ie, older than 65 years or with an underlying cardiac or respiratory disease

Mean age: 70 years

LOCATIONS

30

ICUs in France

648 Patients randomized 641 Patients analyzed 306 High-flow nasal High-flow nasal oxygen with NIV oxygen alone

INTERVENTION

High-flow nasal oxygen High-flow nasal oxygen with NIV with a first session alone for at least 48 hours with a flow of 50 L/min ≥4 hours and minimal duration ≥12 hours/day within 48 hours

342

PRIMARY OUTCOME

Proportion of patients reintubated at day 7

Reintubation rate at day 7 High-flow nasal High-flow nasal oxygen with NIV oxvgen alone 55 of 302 patients 40 of 339 patients 18.2% 11.8% Between-group difference, -6.4% (95% CI, -12.0% to -0.9%) © AMA

FINDINGS

High-Wean study 30 ICUs in France

Thille AW. et al., JAMA 2019: 322: 1465-

The HIGH-WEAN study

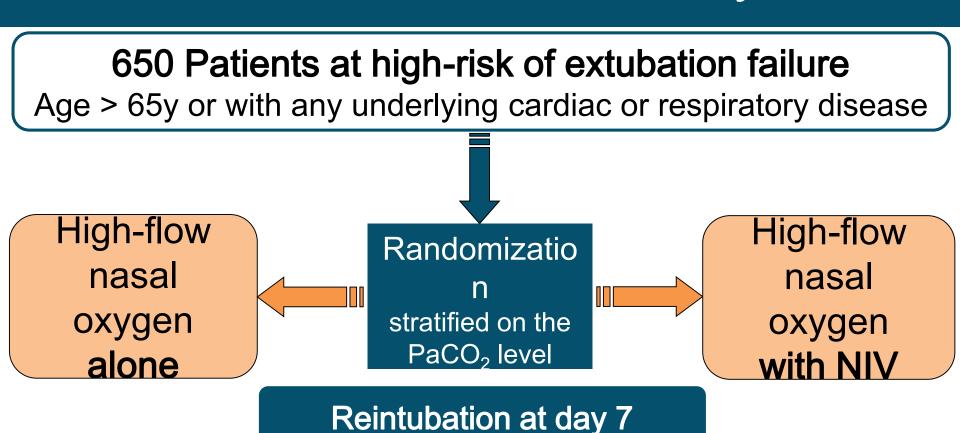
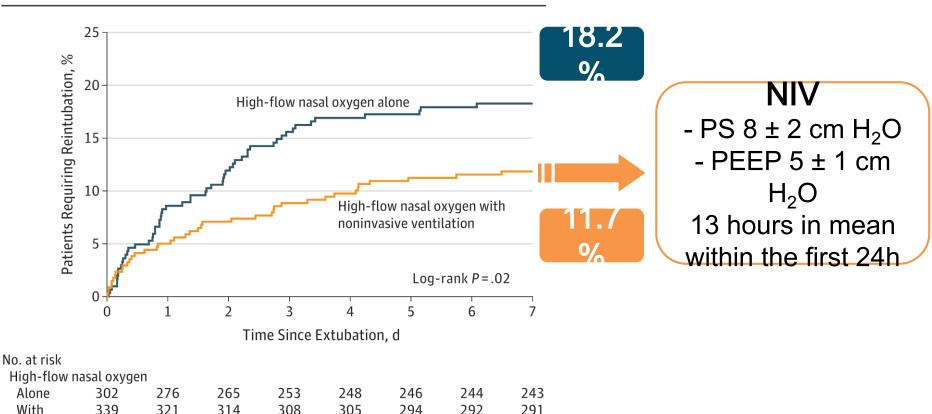



Figure 2. Kaplan-Meier Analysis of Time From Extubation to Reintubation for the Overall Study Population

noninvasive ventilation

Thille AW. et al., JAMA 2019; 322: 1465-

NIV in patients with obesity?

ORIGINAL ARTICLE

Beneficial Effects of Noninvasive Ventilation after Extubation in Obese or Overweight Patients

A Post Hoc Analysis of a Randomized Clinical Trial

Arnaud W. Thille^{1,2}, Rémi Coudroy^{1,2}, Mai-Anh Nay³, Arnaud Gacouin⁴, Maxens Decavèle⁵, Romain Sonneville⁶, François Beloncle⁷, Christophe Girault⁸, Laurence Dangers⁹, Alexandre Lautrette¹⁰, Quentin Levrat¹¹, Anahita Rouzé¹², Emmanuel Vivier¹³, Jean-Baptiste Lascarrou¹⁴, Jean-Damien Ricard^{15,16}, Armand Mekontso-Dessap¹⁷, Guillaume Barberet¹⁸, Christine Lebert¹⁹, Stephan Ehrmann²⁰, Alexandre Massri²¹, Jeremy Bourenne²², Gael Pradel²³, Pierre Bailly²⁴, Nicolas Terzi²⁵, Jean Dellamonica²⁶, Guillaume Lacave²⁷, René Robert^{1,2}, Jean-Pierre Frat^{1,2}, and Stéphanie Ragot²; for the HIGH-WEAN Study Group and the REVA Research Network

Interaction test
Heterogeneity of treatment
effects with NIV on
reintubation
according to BMI

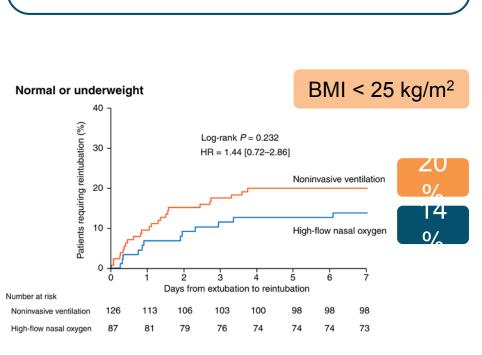
Normal or underweight: BMI < 25

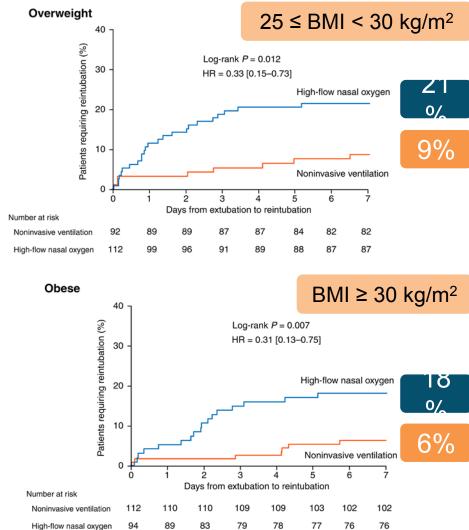
Overweight: 25 ≤ BMI < 30

Obesity: BMI ≥ 30

Thille AW. et al., Am J Respir Crit Care Med 2022;

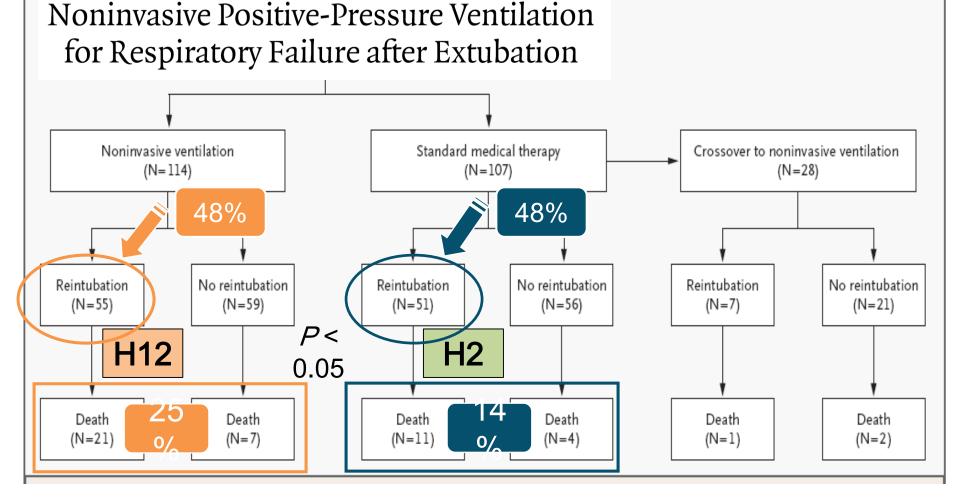
Normal or underweight BMI < 25 N = 213


Overweight $25 \le BMI < 30$ N = 204

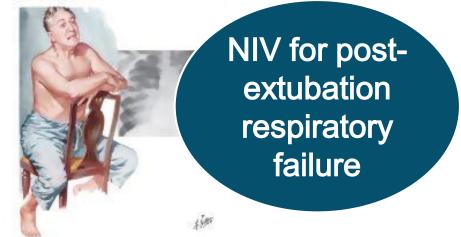

Obesity BMI ≥ 30 N = 206

Intubation at day	7	1	total	number	of	patients
-------------------	---	---	-------	--------	----	----------

Subgroup	Noninvasive ventilation group	High-Flow Oxygen Therapy group	Odds Ratio (95% CI)		Interaction P Value
All patients	40/330 (12%)	53/293 (18%)	0.62 (0.40-0.97)	- 8	
Body mass index					
< 25 kg/m ²	25/126 (20%)	12/87 (14%)	1.55 [0.73- 3.28]		
25 to 29 kg/m2	8/92 (9%)	24/112 (21%)	0.35 [0.15-0.82]	-	0.007
≥ 30 kg/m2	7/112 (6%)	17/94 (18%)	0.30 [0.12 - 0.76]	-	
				0 1 2 3	4
			Noninv Ventilatio	ū	


Reintubation rates according to the BMI according to the BMI

NIV for postextubation respiratory failure



Esteban A. et al., New England Journal of Medicine 2004;

Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure

Bram Rochwerg ¹, Laurent Brochard^{2,3}, Mark W. Elliott⁴, Dean Hess⁵, Nicholas S. Hill⁶, Stefano Nava⁷ and Paolo Navalesi⁸ (members of the steering committee); Massimo Antonelli⁹, Jan Brozek¹, Giorgio Conti⁹, Miquel Ferrer¹⁰, Kalpalatha Guntupalli¹¹, Samir Jaber¹², Sean Keenan^{13,14}, Jordi Mancebo¹⁵, Sangeeta Mehta¹⁶ and Suhail Raoof^{17,18} (members of the task force)

Recommendation

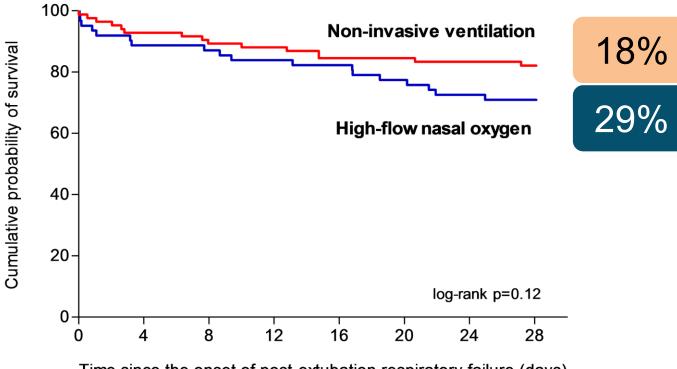
We suggest that NIV should not be used in the treatment of patients with established post-extubation respiratory failure. (Conditional recommendation, low certainty of evidence.)

NIV used as rescue therapy could increase the risk of death by delaying reintubation

High-flow nasal oxygen has never been specifically studied in this setting.

High-Wean study

RESEARCH

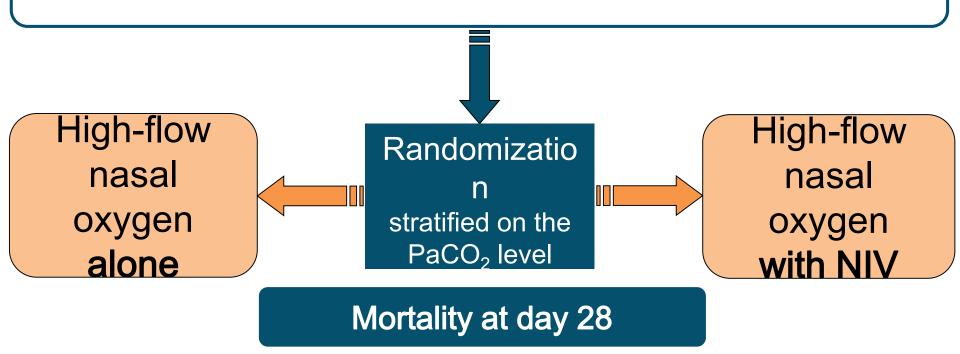

Open Access

Non-invasive ventilation versus high-flow nasal oxygen for postextubation respiratory failure in ICU: a post-hoc analysis of a randomized clinical trial

Arnaud W. Thilla^{1,2*}, Grégoire Monseau¹, Rémi Coudroy^{1,2}, Mai-Anh Nay³, Arnaud Gacouin⁴, Maxens Decavèle⁵, Romain Sonneville⁶, François Beloncle⁷, Christophe Girault⁸, Laurence Dangers⁹, Alexandre Lautrette¹⁰, Quentin Levrat¹¹, Anahita Rouzé¹², Emmanuel Vivier¹³, Jean-Baptiste Lascarrou¹⁴, Jean-Damien Ricard¹⁵, Keyvan Razazi¹⁶, Guillaume Barberet¹⁷, Christine Lebert¹⁸, Stephan Ehrmann¹⁹, Alexandre Massri²⁰, Jeremy Bourenne²¹, Gael Pradel²², Pierre Bailly²³, Nicolas Terzi²⁴, Jean Dellamonica²⁵, Guillaume Lacave²⁶, René Robert^{1,2}, Stéphanie Ragot² and Jean-Pierre Frat^{1,2}for the HIGH-WEAN Study Group and the RFVA research network

Post-hoc analysis focusing on the 158 patients who experienced respiratory failure within the 7 days following extubation.

Primary outcome: Mortality at day 28



Time since the onset of post-extubation respiratory failure (days)

Number at risk								
High flow nasal oxygen	62	55	54	52	51	48	45	44
Non-invasive ventilation	84	78	75	74	71	71	70	69

The Ventilo study: NCT 05686850

670 Patients with post-extubation respiratory failure

Postoperative ≠ Hypoxemic ARF/ARDS

Causes of acute respiratory failure, No. (%	6) ^b	
Atelectasis ^c	94/143 (65.7)	93/148 (62.8)
Tracheal secretions	54/143 (37.8)	58/148 (39.1)
Pneumonia	36/143 (25.2)	27/148 (18.2)
Pulmonary edema	23/143 (16.1)	21/148 (14.2)
Pleural effusion	19/143 (13.3)	18/148 (12.2)
Pulmonary embolism	11/143 (7.7)	6/148 (4.1)

Extubated < 6h after end of surgery: 63% (184/293)

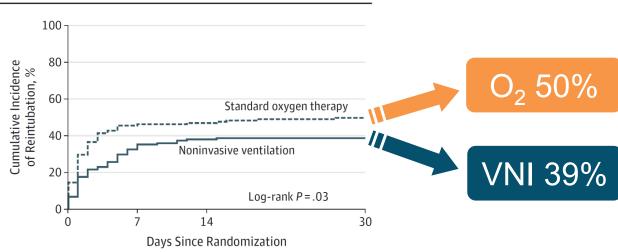
Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Effect of Noninvasive Ventilation on Tracheal Reintubation Among Patients With Hypoxemic Respiratory Failure Following Abdominal Surgery

A Randomized Clinical Trial

No. at risk

Standard oxygen therapy 145


Noninvasive ventilation 148

Samir Jaber, MD, PhD: Thomas Lescot, MD, PhD: Emmanuel Futier, MD, PhD: Catherine Paugam-Burtz, MD, PhD: Philippe Seguin, MD, PhD: Martine Ferrandiere, MD; Sigismond Lasocki, MD, PhD; Olivier Mimoz, MD, PhD: Baptiste Hengy, MD; Antoine Sannini, MD; Julien Pottecher, MD; Paër-Sélim Abback, MD; Beatrice Riu, MD; Fouad Belafia, MD; Jean-Michel Constantin, MD, PhD; Elodie Masseret, MD; Marc Beaussier, MD, PhD; Daniel Verzilli, MD; Audrey De Jong, MD; Gerald Chanques, MD, PhD; Laurent Brochard, MD, PhD; Nicolas Molinari, PhD; for the NIVAS Study Group

99

76

90

71

87

20 ICUs 293 patients NIV (n=148) vs. O₂ (n=145) Abdominal surgery

Jaber S. et al., JAMA 2016; 315:1345-

Good indications for VNI

1. Acute hypercapnic respiratory failure

2. Postoperative respiratory failure

3. After extubation in patients at high risk of extubation failure